Abstract

A series of soybean oil-based amide diol-isosorbide waterborne polyurethane-urea (PUU) dispersions have been successfully prepared, with amounts of isosorbide ranging from 0 to 20 wt % of the total diol content. The thermal and mechanical properties of the resulting PUU films have been characterized by dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, and mechanical testing. The results reveal that the glass transition temperature is increased with increased amounts of isosorbide, and the mechanical properties are improved significantly with the incorporation of isosorbide. For example, the Young's modulus increases from 2.3 to 63 MPa and the ultimate tensile strength increases from 0.7 to 8.2 MPa when the isosorbide amount is increased from 0 to 20 wt %. The thermal stability decreases slightly with the incorporation of isosorbide. This work provides a new way of utilizing biorenewable materials, such as isosorbide and a soybean oil-based amide diol, for the preparation of high-performance polyurethane-urea coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.