Abstract

Simple SummaryThe effect of partial or complete substitution of soybean oil (SO) by poultry fat (PF) on growth, nutrient digestibility, plasma lipids, and the pectoral muscle content of fatty acids (FAs) was examined in this study. Dietary PF supplementation improved breast muscle FA profile but did not affect muscle vitamin E content and liver thiobarbituric acid reactive substances (TBARS). By adding PF to the diet, economic efficiency was greatly improved in a dose-dependent manner. Therefore, the results of this study revealed that PF could be used as a partial or total replacement of SO in broiler nutrition without affecting their performance or physiological response with a tendency to improve their meat products.Continuous genetic improvements of commercial broiler strains has led to the necessity of using fats in their rations to fulfill a large portion of the energetic requirements. Several fat sources have been introduced in poultry nutrition, such as rendering poultry fat (PF) an available and cheap lipid source compared to conventional sources such as soybean oil (SO). The present study investigated the effect of partial or full replacement of SO by PF on performance, nutrient digestibility, blood lipids, and fatty acids (FAs) content of pectoral muscle. Four hundred and eighty one-day-old male Ross-308 chicks were distributed into four experimental groups (12 replicates each): the first group (control) was fed a diet formulated with soybean oil as a fat source while the second to fourth groups (PF25, PF50, and PF100) were fed diets formulated with 25, 50 and 100% of PF as a fat source instead of SO. Results revealed no synergistic effect between SO and PF in any of the studied parameters. Replacing SO by PF did not alter birds’ growth, carcass characteristics, and plasma indices of birds. Abdominal fat% was increased (p < 0.01) in PF50 and PF100. Dry matter digestibility was improved (p < 0.05) in PF50 and PF100, while crude fat and protein digestibility was not affected. Contents of palmitic and docosahexaenoic acids in the pectoral muscle of PF50 and PF100 were reduced (p < 0.01) while concentrations of oleic and linolenic acids, total unsaturated FAs, and polyunsaturated FAs/Saturated FAs ratio were elevated (p < 0.05) in the same groups. Liver thiobarbituric acid reactive substances (TBARS) and muscle vitamin E contents were not altered. The dietary addition of PF greatly improved economic parameters. In conclusion, PF can be used as a lipid source in broiler diets to produce inexpensive meat while maintaining its growth performance.

Highlights

  • The metabolizable energy requirements of modern commercial broiler strains are increasing with continuous improvements in their performance and the swift evolution of the intensive poultry industry

  • The predominant fatty acids (FAs) in poultry fat (PF) was oleic acid followed by linoleic acid, while in soybean oil (SO), it was linoleic acid followed by oleic acid

  • Our results showed that pectoral muscle levels of palmitic acid and docosahexaenoic acids decreased while concentrations of oleic acid, linolenic acid, total UFAs, and PU/S ratio were elevated PF50 and PF100

Read more

Summary

Introduction

The metabolizable energy requirements of modern commercial broiler strains are increasing with continuous improvements in their performance and the swift evolution of the intensive poultry industry. Lipid sources (oils and fats) are commonly included in broiler feeds to fulfill their high energy requirements. Fats added to broiler diets can improve the absorption and digestion of fat-soluble vitamins and other nutrients, enhancing their growth performance under armor neutral and heat stress conditions [2,3]. Animal fats are cheaper than vegetable oils, it is generally believed that the nutritional value of the former is less than that of the latter. Among animal fats, poultry fat (PF) can be utilized by poultry species at a higher rate than tallow and lard oil [6]

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call