Abstract
Diets containing the soya-derived phytoestrogens, genistein and daidzein, decrease plasma cholesterol in humans and experimental animals. The mechanisms responsible for the hypocholesterolaemic effects of these isoflavones are unknown. The present study was conducted to determine if genistein and daidzein regulate hepatocyte cholesterol metabolism and apolipoprotein (apo) B secretion in cultured human hepatoma (HepG2) cells. ApoB secretion was decreased dose-dependently by up to 63% and 71% by genistein and daidzein (100 microM; P<0.0001) respectively. In contrast, no effect on apoAI secretion was observed. Cellular cholesterol synthesis was inhibited 41% by genistein (100 microM; P<0.005) and 18% by daidzein (100 microM; P<0.05), which was associated with significant increases in 3-hydroxy-3-methylglutaryl-CoA reductase mRNA. Cellular cholesterol esterification was decreased 56% by genistein (100 microM; P<0.04) and 29% by daidzein (100 microM; P<0.04); however, mRNA levels for acyl-CoA:cholesterol acyltransferase (ACAT) 1 and ACAT2 were unaffected. At 100 microM, both isoflavones equally inhibited the activities of both forms of ACAT in cells transfected with either ACAT1 or ACAT2. Genistein (100 microM) and daidzein (100 microM) significantly decreased the activity of microsomal triacylglycerol transfer protein (MTP) by 30% and 24% respectively, and significantly decreased MTP mRNA levels by 35% and 55%. Both isoflavones increased low-density lipoprotein (LDL)-receptor mRNA levels by 3- to 6-fold (100 microM; P<0.03) and significantly increased the binding, uptake and degradation of (125)I-labelled LDL, suggesting that enhanced reuptake of newly secreted apoB-containing lipoproteins contributed to the net decrease in apoB secretion. These results indicate that genistein and daidzein inhibit hepatocyte apoB secretion through several mechanisms, including inhibition of cholesterol synthesis and esterification, inhibition of MTP activity and expression and increased expression of the LDL-receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.