Abstract

AbstractThe terrible shuttling of lithium polysulfides (LiPSs) is a major obstacle for commercializing lithium–sulfur (Li–S) batteries as high‐performance energy storage systems. In this study, a carbon‐based interlayer with effective suppression capability on the shuttle effect is developed by simply coating a well‐dispersed mixture of soybean protein isolate/MXene onto the acidified carbon paper (ACP). The resultant composite interlayer (SM@ACP) is able to synergistically diminish the shuttle effect through chemical adsorption and physical blocking. Meanwhile, this interlayer displays excellent conductivity and facilitates the diffusion of Li ions due to the composite coating to promote both electron/ion conduction as well as the porous structure of ACP. Benefiting from the unique properties of the composite interlayer, the as‐assembled Li–S batteries with SM@ACP interlayers show a great improvement in the cycling stability and rate performance, delivering a very low‐capacity decay rate of 0.071% per cycle at 0.5 C even after 800 cycles. This work provides a feasible route to realize rational design and commercial mass production of desirable interlayers for promoting the commercialization of Li–S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.