Abstract

Bioplastics and bioplastic composites are a group of emerging sustainable materials that exhibit favorable characteristics for use in horticulture-production containers. Biocontainers made from composite materials of soy [Glycine max (L.) Merr.] bioplastic and poly(lactic) acid (PLA) have been shown to release nitrogen (N) at a rate suitable for supporting plant growth. We hypothesized that fertilizer applications can be reduced while maintaining adequate nutrition levels for plant production when using soy-based containers. To test this hypothesis and quantify potential reduction of fertilizer, we grew marigold ‘Honeycomb’ (Tagetes patula L.) in five prototypes of soy-composite biocontainers [soy bioplastic compounded with PLA or polyhydroxyalkanoates (PHA)] and a petroleum-plastic (polypropylene) control container with five fertilizer treatments supplying 1) 60N‒4P‒49K; 2) 75N‒5P‒61K; 3) 105N‒7P‒85K; 4) 150N‒10P‒122K; or 5) 300N‒20P‒244K mg. At harvest, plants grown in all soy‒PLA composite biocontainers and protein + PLA biocontainers had higher concentrations and contents of N and P compared with plants grown in petroleum-plastic containers across all fertilizer treatments. Shoot K concentrations were highest for plants grown in all soy‒PLA and soy‒PHA biocontainers compared with plants grown in petroleum-plastic containers across all fertilizer treatments, whereas shoot K concentrations in plants grown in protein + PLA biocontainers were equal to or lower than plants in petroleum-plastic containers. Total plant dry weight was greater for plants grown in biocontainers made of 50% soy‒50% PLA and protein + PLA than for plants grown in control containers across all fertilizer treatments except at the highest rate of fertilizer in which plants received 300N‒20P‒244K mg. Our results support the hypothesis that fertilizer inputs can be reduced when using soy-composite biocontainers. Biocontainers made with equal parts soy bioplastic and PLA showed strong potential for achieving adequate plant growth with reduced fertilizer input. Our results demonstrate that fertilizer can be reduced by as much as 80% when growing marigold in containers made of 50% soy‒50% PLA for 6 weeks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.