Abstract
Alpha sarcoglycan (α-SG) is highly expressed in differentiated striated muscle, and its disruption causes limb-girdle muscular dystrophy. Accordingly, the myogenic master regulator MyoD finely modulates its expression. However, the mechanisms preventing α-SG gene expression at early stages of myogenic differentiation remain unknown. In this study, we uncovered Sox9, which was not previously known to directly bind muscle gene promoters, as a negative regulator of α-SG gene expression. Reporter gene and chromatin immunoprecipitation assays revealed three functional Sox-binding sites that mediate α-SG promoter activity repression during early myogenic differentiation. In addition, we show that Sox9-mediated inhibition of α-SG gene expression is independent of MyoD. Moreover, we provide evidence suggesting that Smad3 enhances the repressive activity of Sox9 over α-SG gene expression in a transforming growth factor-β-dependent manner. On the basis of these results, we propose that Sox9 and Smad3 are responsible for preventing precocious activation of α-SG gene expression during myogenic differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.