Abstract

Neural stem cells (NSCs) are uncommitted cells of the CNS defined by their multipotentiality and ability to self renew. We found these cells to not be present in substantial numbers in the CNS until after embryonic day (E) 10.5 in mouse and E5 in chick. This coincides with the induction of SOX9 in neural cells. Gain- and loss-of-function studies indicated that SOX9 was essential for multipotent NSC formation. Moreover, Sonic Hedgehog was able to stimulate precocious generation of NSCs by inducing Sox9 expression. SOX9 was also necessary for the maintenance of multipotent NSCs, as shown by in vivo fate mapping experiments in the adult subependymal zone and olfactory bulbs. In addition, loss of SOX9 led ependymal cells to adopt a neuroblast identity. These data identify a functional link between extrinsic and intrinsic mechanisms of NSCs specification and maintenance, and establish a central role for SOX9 in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.