Abstract

ObjectiveThe effect of Sox9 on the differentiation of bone marrow mesenchymal stem cells (BMSCs) to nucleus pulposus (NP)-like (chondrocyte-like) cells in vitro has been demonstrated. The objective of this study is to investigate the efficacy and feasibility of Sox9-transduced BMSCs to repair the degenerated intervertebral disc in a rabbit model.Materials and MethodsFifty skeletally mature New Zealand white rabbits were used. In the treatment groups, NP tissue was aspirated from the L2-L3, L3-L4, and L4-L5 discs in accordance with a previously validated rabbit model of intervertebral disc degeneration and then treated with thermogelling chitosan (C/Gp), GFP-transduced autologous BMSCs with C/Gp or Sox9-transduced autologous BMSCs with C/Gp. The role of Sox9 in the chondrogenic differentiation of BMSCs embedded in C/Gp gels in vitro and the repair effect of Sox9-transduced BMSCs on degenerated discs were evaluated by real-time PCR, conventional and quantitative MRI, macroscopic appearance, histology and immunohistochemistry.ResultsSox9 could induce the chondrogenic differentiation of BMSCs in C/Gp gels and BMSCs could survive in vivo for at least 12 weeks. A higher T2-weighted signal intensity and T2 value, better preserved NP structure and greater amount of extracellular matrix were observed in discs treated with Sox9-transduced BMSCs compared with those without transduction.ConclusionSox9 gene transfer could significantly enhance the repair effect of BMSCs on the degenerated discs.

Highlights

  • Degenerative disc disease (DDD) is considered one of the major causes of low back pain [1]

  • Sox9 could induce the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in C/Gp gels and BMSCs could survive in vivo for at least 12 weeks

  • It gradually decreased over time, the expression of Sox9 was higher in Sox9-transduced BMSCs than in green fluorescent protein (GFP)-transduced BMSCs at all time points (Fig. 1B)

Read more

Summary

Introduction

Degenerative disc disease (DDD) is considered one of the major causes of low back pain [1]. Intervertebral disc degeneration (IVDD) is characterised by a decrease in the function and number of viable cells in the disc, accompanied by a reduction in the synthesis of extracellular matrix (ECM) components such as aggrecan and type II collagen [2]. Cell-based tissue engineering, which aims to restore IVD structure and function, represents a promising approach to IVD repair or regeneration. The harvest of NP cells from normal discs could induce degeneration in the donor disc [4], whereas cells derived from degenerative discs show an altered phenotype, increased senescence [5] and decreased expression of matrix components [2]. As NP cells possess a chondrocyte-like phenotype [6], bone marrow mesenchymal stem cells (BMSCs), which are capable of differentiating into a chondrocyte-like phenotype when appropriately stimulated [7,8], have shown promise as a suitable cell source to be widely used for IVD regeneration [9,10,11]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.