Abstract

BackgroundTumor metastasis is responsible for 90% of cancer-related deaths. Recently, a strong link between microRNA dysregulation and human cancers has been established. However, the molecular mechanisms through which microRNAs regulate metastasis and cancer progression remain unclear.MethodsWe analyzed the reciprocal expression regulation of miR-31 and SOX4 in esophageal squamous and adenocarcinoma cell lines by qRT-PCR and Western blotting using overexpression and shRNA knock-down approaches. Furthermore, methylation studies were used to assess epigenetic regulation of expression. Functionally, we determined the cellular consequences using migration and invasion assays, as well as proliferation assays. Immunoprecipitation and ChIP were used to identify complex formation of SOX4 and co-repressor components.ResultsHere, we report that SOX4 promotes esophageal tumor cell proliferation and invasion by silencing miR-31 via activation and stabilization of a co-repressor complex with EZH2 and HDAC3. We demonstrate that miR-31 is significantly decreased in invasive esophageal cancer cells, while upregulation of miR-31 inhibits growth, migration and invasion of esophageal adenocarcinoma (EAC) and squamous cell carcinoma (ESCC) cell lines. miR-31, in turn, targets SOX4 for degradation by directly binding to its 3′-UTR. Additionally, miR-31 regulates EZH2 and HDAC3 indirectly. SOX4, EZH2 and HDAC3 levels inversely correlate with miR-31 expression in ESCC cell lines. Ectopic expression of miR-31 in ESCC and EAC cell lines leads to down regulation of SOX4, EZH2 and HDAC3. Conversely, pharmacologic and genetic inhibition of SOX4 and EZH2 restore miR-31 expression. We show that SOX4, EZH2 and HDAC3 form a co-repressor complex that binds to the miR-31 promoter, repressing miR-31 through an epigenetic mark by H3K27me3 and by histone acetylation. Clinically, when compared to normal adjacent tissues, esophageal tumor samples show upregulation of SOX4, EZH2, and HDAC3, and EZH2 expression is significantly increased in metastatic ESCC tissues.ConclusionsThus, we identified a novel molecular mechanism by which the SOX4, EZH2 and miR-31 circuit promotes tumor progression and potential therapeutic targets for invasive esophageal carcinomas.

Highlights

  • Tumor metastasis is responsible for 90% of cancer-related deaths

  • Results miR-31 expression is downregulated in invasive esophageal cancer cells To investigate the role of miR-31 in esophageal cancers, we examined the expression of miR-31 in esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC) and Barrett’s esophagus cell lines of differing invasive potential (Figure 1)

  • To focus on the biological significance and regulatory mechanisms of miR-31 expression in invasive adenocarcinoma and squamous cell carcinoma, we expressed miR-31 in invasive ESCC and EAC cell lines and analyzed the effects on cell migration and invasion

Read more

Summary

Introduction

Tumor metastasis is responsible for 90% of cancer-related deaths. Recently, a strong link between microRNA dysregulation and human cancers has been established. MiR-31 is upregulated in serum and tissue samples of esophageal squamous cell carcinoma (ESCC), with expression correlating to staging [18]. In another ESCC cohort miR-31 expression was decreased, and low miR-31 expression correlated with poorly differentiated tumors and decreased survival [19]. These reports emphasize the complexity of miR-31-associated phenotypes and the need to better define miR-31 targets, as well as pathways regulating miR31 expression in different cancers

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call