Abstract

Embryonic mice lacking functional Sox4 transcription factor die from cardiac failure at embryonic day (ED) 14. Heart morphogenesis in these embryos was analyzed in hematoxylin-azophlochsin or immunohistochemically stained, 3-dimensionally reconstructed serial sections between ED12 and ED14. Although Sox4 is expressed in the endocardially derived tissue of both the outflow tract and atrioventricular canal, Sox4-deficient hearts only suffer from defective transformation of the endocardial ridges into semilunar valves and from lack of fusion of these ridges, usually resulting in common trunk, although the least affected hearts should be classified as having a large infundibular septal defect. The more serious cases are, in addition, characterized by an abnormal number and position of the semilunar valve-leaflet anlagen, a configuration of the ridges typical for transposition of the great arteries (with linear rather than spiral course of both ridges and posterior position of the pulmonary trunk at the level of the valve), and variable size of the aorta relative to the pulmonary trunk. The coronary arteries always originated from the aorta, irrespective of its position relative to the pulmonary trunk. The restriction of the malformations to the arterial pole implies that the interaction between the endocardially derived tissue of the outflow tract and the neural crest-derived myofibroblasts determines proper development of the arterial pole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.