Abstract

Osteogenic differentiation is a crucial process of new bone formation. This study aimed to explore the roles and mechanism of SRY-Box Transcription Factor 2 (SOX2) on proliferation and osteogenic differentiation of MC3T3-E1 cells. Bone morphogenetic protein 2 (BMP2) was used to induce the osteogenic differentiation of MC3T3-E1 cells. The expression of SOX2 was determined by quantitative real-time PCR (RT-PCR) at different time points after induction. The SOX2 overexpression plasmids were constructed and transfected into MC3T3-E1 cells. Osteogenic differentiation was evaluated by Alizarin Red S staining and alkaline phosphatase (ALP) assay. The expressions of osteogenic differentiation markers including runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) were detected by western blot assay. Luciferase reporter and CHIP assays were used to confirm that SOX2 regulated the transcriptional activation of leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4). We found that SOX2 was down-regulated upon BMP2-induced osteogenic differentiation in MC3T3-E1 cells. Overexpression of SOX2 effectively inhibited osteogenic differentiation with decreased ALP activity, calcification, and osteogenic differentiation markers' expression including Runx2, OPN, and OCN. LGR4 was identified as a target of SOX2, and the inhibitory effect of SOX2 on osteogenic differentiation was reversed by knockdown of LGR4. The present study confirmed that SOX2 suppressed osteogenic differentiation of MC3T3-E1 cells through targeting LGR4, which possesses a therapeutic strategy for bone formation and generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call