Abstract
The transcription factor Sox2 plays important roles in both human and mouse retinal development. Although loss-of-function mutations in Sox2 have been studied in mice, gain-of-function experiments in the neural retina have been lacking. The detailed expression pattern of Sox2 in the developing mouse retina was examined by immunohistochemistry. Then, Sox2 was expressed in a retinal explant culture prepared from E17 mouse embryos by retrovirus-mediated gene transfer to examine its role in retinal development. In addition, shRNA was used to suppress Sox2 in a retinal explant using a retrovirus-mediated system. Sox2 was expressed throughout the neuroblastic layer in the embryonic retina, but only in the inner nuclear layer in the mature retina. Double immunostaining revealed that Sox2 was expressed in Müller glial cells and in a subset of amacrine cells. Forced expression of Sox2 in a mouse retinal explant culture resulted in the dramatic accumulation of amacrine cells in the inner nuclear layer; in addition, cells expressing amacrine cell markers were also found on the innermost side of the outer nuclear layer. The expression of Pax6, which plays an important role in amacrine cell differentiation, was observed in the Sox2-expressing cells, and Sox2 activated the Pax6 promoter to drive luciferase expression in Y79 cells. A decrease in retinal progenitor cell proliferation accompanied these effects. The suppression of Sox2 expression by shRNA resulted in a decreased number of cells in the inner nuclear layer. Therefore, ectopic Sox2 expression can induce amacrine cells in the mouse retina from stage E17 onward, possibly by facilitating cell cycle exit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.