Abstract

Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. It is unclear if there are mechanisms that prevent uncoupling of these processes to ensure robust development. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial to mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here we show that cells expressing the neural inducing transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesodermal territory. This is critical for preventing ectopic neural tissue from forming. The mechanism involves specific interactions between Sox2 and the mesoderm inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2 expressing cells trapped in the partial EMT, cells are now able to exit into the mesodermal territory, but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.