Abstract

Loss-of-function mutations of JAK1/2 impair cancer cell responsiveness to IFNγ and immunogenicity. Therefore, an understanding of compensatory pathways to activate IFNγ signaling in cancer cells is clinically important for the success of immunotherapy. Here we demonstrate that the transcription factor SOX10 hinders immunogenicity of melanoma cells through the IRF4-IRF1 axis. Genetic and pharmacologic approaches revealed that SOX10 repressed IRF1 transcription via direct induction of a negative regulator, IRF4. The SOX10-IRF4-IRF1 axis regulated PD-L1 expression independently of JAK-STAT pathway activity, and suppression of SOX10 increased the efficacy of combination therapy with an anti-PD-1 antibody and histone deacetylase inhibitor against a clinically relevant melanoma model. Thus, the SOX10-IRF4-IRF1 axis serves as a potential target that can bypass JAK-STAT signaling to immunologically warm up melanoma with a "cold" tumor immune microenvironment. SIGNIFICANCE: This study identifies a novel SOX10/IRF4 pathway that regulates noncanonical induction of IRF1 independent of the JAK-STAT pathway and can be targeted to improve the efficacy of anti-PD-1 therapy in melanoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.