Abstract

This paper discusses the main architectural alternatives and design decisions in order to implement a sows’ activity classification model on electronic devices. The different possibilities are analyzed in practical and technical aspects, focusing on the implementation metrics, like cost, performance, complexity and reliability. The target architectures are divided into: server based, where the main processing element is a central computer; and embedded based, where the processing is distributed on devices attached to the animals. The initial classification model identifies the activities performed by the sows using a multi-process Kalman filter having, as input, 3-axes data from accelerometers. However, the power demanding hardware resources to run the filters require frequent battery recharges, making its use unsuitable in the current state-of-the-art. It motivated the development of a heuristic classification approach, focusing on the resource constrained characteristics of embedded systems. The new approach classifies the activities performed by the sows with accuracy close to 90%. It was implemented as a hardware module that can easily be instantiated to provide preprocessed information to models in order to detect important situations in the sows’ life, e.g. the onset of farrowing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.