Abstract

Cold-air mesocyclones remain a forecasting challenge in the southern hemisphere middle and higher latitudes, where conventional observations are lacking. One way to improve mesocyclone predictability is to determine their larger-scale circulation environments and associations with teleconnection patterns. To help realize this objective, reanalysis datasets on atmospheric and upper-ocean synoptic variables important in mesocyclone development are composited and compared to previously published mesocyclone spatial inventories. These analyses demonstrate a consistent association between higher frequencies of mesocyclones, greater sea ice extent and large positive differences in the SST minus low-altitude air temperature fields, coinciding with enhanced westerly low-level winds having a southerly component. Composites in the 1979–2001 period also were formed for opposite phases of El Nino Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and the Trans-Polar Index (TPI). Regions likely to be favorable for mesocyclone development relative to climatology were identified. The largest (smallest) variations in meso-cyclogenesis occur in the South Pacific (South Indian Ocean, south of Australia), and are dominated by ENSO. The SAM and TPI are of secondary importance, yet still influential, and exhibit strong regional-scale variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.