Abstract

Abstract Shifts in flowering phenology have been studied in detail in the northern hemisphere and are a key plant response to climate change. However, there are relatively fewer data on species' phenological shifts in the southern hemisphere. We combined historic field data, data from herbarium specimens dating back to 1842 and modern field data for 37 Australian species to determine whether species were flowering earlier in the year than they had in the past. We also combined our results with data compiled in the southern and northern hemispheres, respectively, to determine whether southern hemisphere species are showing fewer advances in flowering phenology through time. Across our study species, we found that 12 species had undergone significant shifts in flowering time, with four species advancing their flowering and eight species delaying their flowering. The remaining 25 species showed no significant shifts in their flowering phenology. These findings are important because delays or lack of shifts in flowering phenology can lead to mismatches in trophic interactions between plants and pollinators or seed dispersers, which can have substantial impacts on ecosystem functioning and primary productivity. Combining our field results with data compiled from the literature showed that only 58.5% of southern hemisphere species were advancing their flowering time, compared with 81.6% of species that were advancing their flowering time in the northern hemisphere. Our study provides further evidence that it is not adequate for ecologists to assume that southern hemisphere ecosystems will respond to future climate change in the same way as ecosystems north of the Equator. Synthesis. Field data and data from the literature indicate that southern hemisphere species are showing fewer advances in their flowering phenology through time, especially in comparison to northern hemisphere species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.