Abstract

Abstract Both high-latitude (HLM) and low-latitude modes (LLM) of variability of zonal wind in the Southern Hemisphere have been identified. Through an analysis of a simulation for 1871–2200 by the CSIRO Mark 3 climate model, the extent to which these might both be described as “annular modes,” based on their statistical patterns, physical mechanisms, and usefulness in climate study, is assessed. The modes are determined as EOF1 and EOF2 of vertically integrated zonal and monthly mean zonal wind, for 1871–1970. These match well those from ECMWF Re-Analysis (ERA) data and also from the earlier Mark 2 model. The mode index time series relate to largely annular patterns of local wind and surface pressure anomalies [with HLM giving the familiar southern annular mode (SAM)], and other simulated quantities. While modes calculated from 90° sectors are only moderately correlated (mostly in the polar region) for HLM, the link increases with time scale. There is little such relationship for LLM. A momentum equation analysis using daily data confirms that both zonal modes are driven by eddies, but only HLM features a positive eddy–mean flow feedback. Variation in feedback and surface damping through the seasonal cycle relate well to that in index autocorrelation, with the HLM being more persistent in summer. Stratospheric winds feature a long-lived component that tends to lead the HLM. The HLM drives sea surface temperature anomalies that persist for months, and coupling with the ocean increases variability on longer time scales. The annular variability in the warmer climate of the twenty-second century is barely changed, but the mean climate change in the far south projects strongly on the HLM. The LLM features some statistical annularity and may have some uses. However, only the HLM can be considered to be a physically based mode—the zonal-wind equivalent to the one southern annular mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.