Abstract

Animals living underground deal with multiple physiological challenges, such as hypoxia and hypercarbia, but may have reduced thermoregulation demands because of the more stable underground microclimate. Southeastern pocket gophers (Geomys pinetis Rafinesque) occur in the fire-adapted, open-pine forests of the southeastern Atlantic Coastal Plain where prescribed fire is commonly used to manage understory vegetation. They are almost exclusively fossorial, and their tunnels provide ecological services, including shelter, for a suite of commensal vertebrates and invertebrates. To quantify potential thermoregulation benefits of southeastern pocket gopher tunnels, we compared temperatures in active tunnels (n = 31) to aboveground temperatures during winter (December 2018–February 2019), and to aboveground temperatures during prescribed fire events (n = 16) occurring in spring (March–May 2019). During winter, tunnels provided a more stable thermal environment (average range = 6.5 ± 0.8 C; mean ± se) relative to aboveground (average range = 24.8 ± 1.8 C) temperatures. Similarly, mean tunnel temperature range (2.05 ± 0.5 C) was significantly narrower than aboveground temperature range associated with fire events (497.0 ± 101.4 C). Clearly, tunnels provide a stable thermal environment for pocket gophers and commensals that use their tunnel systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.