Abstract

Rainfall extremes over South Australia are connected with broad-scale atmospheric rearrangements associated with strong meridional sea surface temperature (SST) gradients in the eastern Indian Ocean. Thirty-seven years of winter radiosonde data is used to calculate a time series of precipitable water (PW) and convective available potential energy (CAPE) in the atmosphere. Principle component analysis on the parameters of CAPE and PW identify key modes of variability that are spatially and seasonally consistent with tropospheric processes over Australia. The correlation of the leading principle component of winter PW to winter rainfall anomalies reveal the spatial structure of the northwest cloudband and fronts that cross the southern half of the continent during winter. Similarly the second and third principle components, respectively, reveal the structures of the less frequent northern and continental cloudbands with remarkable consistency. 850 hPa-level wind analysis shows that during dry seasons, anomalous offshore flow over the northwest of Australia inhibits advection of moisture into the northwest, while enhanced subsidence from stronger anticyclonic circulation over the southern half of the continent reduces CAPE. This coincides with a southward shift of the subtropical ridge resulting in frontal systems passing well to the south of the continent, thus producing less frequent interaction with moist air advected from the tropics. Wet winters are the reverse, where a weaker meridional pressure gradient to the south of the continent allows rain-bearing fronts to reach lower latitudes. The analysis of SSTs in the Indian Ocean indicate that anomalous warm (cool) waters in the southeast Indian Ocean coincide with a southward (northward) shift in the subtropical ridge during dry (wet) seasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call