Abstract

The importance of the investigation of magnetic superstorms is not limited to academic interest, because these superstorms can cause catastrophic impact on the modern civilisation due to our increasing dependency on technological infrastructure. In this context, the Carrington storm in September 1859 is considered as a benchmark of observational history owing to its magnetic disturbance and equatorial extent of the auroral oval. So far, several recent auroral reports at that time have been published but those reports are mainly derived from the Northern Hemisphere. In this study, we analyse datable auroral reports from South America and its vicinity, assess the auroral extent using philological and astrometric approaches, identify the auroral visibility at − 17.3° magnetic latitude and further poleward and reconstruct the equatorial boundary of the auroral oval to be 25.1° ± 0.5° in invariant latitude. Interestingly, brighter and more colourful auroral displays were reported in the South American sector than in the Northern Hemisphere. This north–south asymmetry is presumably associated with variations of their magnetic longitude and the weaker magnetic field over South America compared to the magnetic conjugate point and the increased amount of magnetospheric electron precipitation into the upper atmosphere. These results attest that the magnitude of the Carrington storm indicates that its extent falls within the range of other superstorms, such as those that occurred in May 1921 and February 1872, in terms of the equatorial boundary of the auroral oval.

Highlights

  • The Carrington storm is one of the benchmarks for space weather events that accompanied the earliest observations of a white-light flare (Carrington 1859; Hodgson 1859), and is one of the largest magnetic storms in observational history (Tsurutani et al 2003; Cliver and Dietrich 2013; Hayakawa et al 2019)

  • Our analyses provided further details of the auroral displays observed in Chilean cities and nearby vessels

  • These reports provided more data on the low-latitude aurorae observed in the Southern Hemisphere and updated the equatorial boundary of the auroral oval during this storm, based on naval observations by the vessel Dart at − 17.3° Magnetic latitude (MLAT)

Read more

Summary

Introduction

The Carrington storm is one of the benchmarks for space weather events that accompanied the earliest observations of a white-light flare (Carrington 1859; Hodgson 1859), and is one of the largest magnetic storms in observational history (Tsurutani et al 2003; Cliver and Dietrich 2013; Hayakawa et al 2019). The datable observations in South America are of significant importance, as the reports from Santiago and Valparaíso have resulted in the most equatorial auroral observations in the Southern Hemisphere.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call