Abstract
Inflation is a critical economic series, and proper targeting is required for a stable economy. With the current economic conditions that the world has faced as a result of COVID-19, understanding the effects of this on economies is critical because it will guide policies. Recent research on South African inflation has focused on statistical modelling, specifically the ARFIMA, GARCH, and GJR-GARCH models. In this study, we extend this into deep learning and use the MSE, RMSE, RSMPE, MAE, and MAPE to assess performance. To test which model has better forecasts, we use the Diebold-Mariano test. According to the findings of this study, clustered bootstrap LSTM models outperform the previously used ARFIMA-GARCH and ARFIMA-GJR-GARCH models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.