Abstract

In this work, the effect of the loading path on the multicracking of Nickel thin films on Kapton® substrate was studied thanks to an experimental set-up combining controlled biaxial deformation, x-ray diffraction and digital image correlation. Samples were biaxially stretched up to 10% strain following either a single equibiaxial path or a complex one consisting of loading successively along each of the axes of the cruciform specimen. While the first path leads to a mud-crack pattern (random), the second leads to a roman-bricks one (square). Moreover, the in situ x-ray diffraction experiments show that the stress field developed in the thin film during the multicracking is clearly dependent on the loading path. By combining the study of stresses and x-ray diffraction peaks linewidth, we evidenced mechanical domains related to initiation of cracks and their multiplication for each loading path. Moreover, stress evolution in the thin film during mud-crack pattern formation is significantly smoother than in the case of roman-bricks one as represented in the plane stress space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.