Abstract

Sous-vide cooking is a highly praised method used to cook muscle foods because of its desired effect of providing better sensory properties by maintaining texture. In this study, we further explored the effect of water on texture by revealing the mechanisms of moisture migration. Low field nuclear magnetic resonance (LF-NMR) showed that the nonflowing water in sous-vide cooking hairtail was 2.36 ± 0.33% higher than that in traditional cooking. Magnetic resonance imaging (MRI) was used to clarify the law of moisture migration induced by temperature, and the moisture migration of the sous-vide cooking hairtail was slower during the holding heating stage. The microstructure explained the change rules of the texture. The degree of change was consistent with the moisture migration level. Digitalizing analysis quantitatively verified the effect of sous-vide cooking on the hairtail microstructure. The low moisture migration rate of sous-vide cooking resulted in a less damaged microstructure of the hairtail, manifesting as a desirable texture. PRACTICAL APPLICATION: LF-NMR and MRI showed that sous-vide hairtails exhibited a lower moisture migration rate. The holding heating stage only slightly changed the microstructure of the hairtail. The digitalizing analysis confirmed the moisture migration mechanisms. Heat-induced protein denaturation was closely related to the water state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call