Abstract
We present and modernize Souriau’s 1958 geometric framework for Relativistic continuous media, and enlighten the necessary and the ad hoc modeling choices made since. We focus as much as possible on the Continuum Mechanics point of view and describe the general covariant formulation of Hyperelasticity in (Variational) General Relativity. At this level of generality, different relativistic strain and stress tensors are formulated and discussed. Then, the choice of an observer, through the introduction of a spacetime structure allows us to make deeper insights into the foundations of Continuum Mechanics. We extend Souriau’s calculations, initially performed in the flat Minkowski spacetime, to the Schwarzschild spacetime accounting for gravitation. Finally, we recover the Classical Galilean Hyperelasticity with gravity, as the Newton–Cartan infinite light speed limit of this formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.