Abstract

Atmospheric pollution in the Arctic has been an important driver for the ongoing climate change there. Increase in the Arctic aerosols causes the phenomena of Arctic haze and Arctic amplification. Our analysis of aerosol optical depth (AOD), black carbon (BC), and dust using ground-based, satellite, and reanalysis data in the Arctic for the period 2003-2019 shows that the lowest amount of all these is found in Greenland and Central Arctic. There is high AOD, BC, and dust in the northern Eurasia and parts of North America. All aerosols show their highest values in spring. Significant positive trends in AOD (> 0.003year-1) and BC (0.0002-0.0003year-1) are found in the northwestern America and northern Asia. Significant negative trends are observed for dust (- 0.0001year-1) around Central Arctic. Seasonal analysis of AOD, BC, and dust reveals an increasing trend in summer and decreasing trend in spring in the Arctic. The major sources of aerosols are the nearby Europe, Russia, and North America regions, as assessed using the potential source contribution function (PSCF). Anthropogenic emissions from the transport, energy, and household sectors along with natural sources such as wildfires contribute to the positive trends of aerosols in the Arctic. These increasing aerosols in the Arctic influence Arctic amplification through radiative effects. Here, we find that the net aerosol radiative forcing is high in Central Arctic, Greenland, Siberia, and Canadian Arctic, about 2-4 W/m2, which can influence the regional temperature. Therefore, our study can assist policy decisions for the mitigation of Arctic haze and Arctic amplification in this environmental fragile region of the Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.