Abstract

Adaptations that allow teredinids to maintain and thrive on wood, a nutritionally unbalanced food, make these marine bivalves remarkable. Capable of filter-feeding, shipworms house endosymbiotic bacteria synthesizing cellulolytic enzymes for digestion of wood carbohydrates and providing nitrogen to their host through nitrogen fixation. To what extent each of these nutrition modes contributes to the shipworm's metabolism remains an open question. In this experimental study, we estimated source partitioning through the determination of δ13C and δ15N values in original biological samples. For this purpose, pieces of common alder (Alnus glutinosa) were immersed at a coastal station of the north-western Mediterranean Sea. The shipworm Bankia carinata infected wood logs and stable isotope mixing models suggested it got most of the carbon and nitrogen it needs from separate sources. From 71 to 77% of the carbon was derived from the digestion of wood carbohydrates, whereas between 42 and 82% of the nitrogen originated from N2 fixation. These first semi-quantitative estimations suggest that the contribution of N2 fixers to nitrogen requirements of this shipworm species is far from incidental.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.