Abstract

In species showing distributions attached to particular features of the landscape or conspicuous signs, counts are commonly made by making focal observations where animals concentrate. However, to obtain density estimates for a given area, independent searching for signs and occupancy rates of suitable sites is needed. In both cases, it is important to estimate detection probability and other possible sources of variation to avoid confounding effects on measurements of abundance variation. Our objective was to assess possible bias and sources of variation in a two-step protocol in which random designs were applied to search for signs while continuously recording video cameras were used to perform abundance counts where animals are concentrated, using mara (Dolichotis patagonum) as a case study. The protocol was successfully applied to maras within the Península Valdés protected area, given that the protocol was logistically suitable, allowed warrens to be found, the associated adults to be counted, and the detection probability to be estimated. Variability was documented in both components of the two-step protocol. These sources of variation should be taken into account when applying this protocol. Warren detectability was approximately 80% with little variation. Factors related to false positive detection were more important than imperfect detection. The detectability for individuals was approximately 90% using the entire day of observations. The shortest sampling period with a similar detection capacity than a day was approximately 10 hours, and during this period, the visiting dynamic did not show trends. For individual mara, the detection capacity of the camera was not significantly different from the observer during fieldwork. The presence of the camera did not affect the visiting behavior of adults to the warren. Application of this protocol will allow monitoring of the near-threatened mara providing a minimum local population size and a baseline for measuring long-term trends.

Highlights

  • Estimations of abundance are fundamental in ecology and conservation to answer a wide range of questions

  • We propose a two-step protocol in which random sampling designs are used to search for signs and continuously recording video cameras are used to perform abundance counts at the points where animals are concentrated

  • We placed study sites where we knew that the species was present, based on knowledge from local people and previous visits, because i) we were interested in sources of variation in the counting of warrens rather than species occurrence, and ii) random points within Península Valdés produced few warren encounters with high cost (Section B in S1 File)

Read more

Summary

Introduction

Estimations of abundance are fundamental in ecology and conservation to answer a wide range of questions. Often scientists and decision makers need to compare abundance through space or time, and for this purpose, it is important to estimate possible sources of variation in the probability of detecting an individual [1]. Several methods to estimate abundance that cope with imperfect detection have been developed, but these methods make several assumptions. Distance sampling and Random Encounter Models require a minimum number of encounters and random design [3, 4]. These conditions are difficult or impossible to meet in rare or elusive species that are difficult to catch or when individuals are not consistently recognizable

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call