Abstract

AbstractWe employ a moist energy balance model (MEBM), representing atmospheric heat transport as the diffusion of near‐surface moist static energy, to evaluate sources of uncertainty in the meridional pattern of surface warming. Given zonal mean patterns of radiative forcing, radiative feedbacks, and ocean heat uptake, the MEBM accurately predicts zonal mean warming as simulated by general circulation models under increased CO2. Over a wide range of latitudes, the MEBM captures approximately 90% of the variance in zonal mean warming across the general circulation models, with approximately 70% of the variance attributable to differences in radiative feedbacks alone. Partitioning the radiative feedbacks into individual components shows that the majority of the uncertainty in the meridional pattern of warming arises from uncertainty in cloud feedbacks. Isolating feedback uncertainty within specific regions demonstrates that tropical feedback uncertainty leads to surface warming uncertainty that is global and nearly uniform with latitude, whereas polar feedback uncertainty leads to surface warming uncertainty that is largely confined to the poles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.