Abstract

In this paper, we use decision trees to construct models for predicting vegetation types from environmental attributes in a salt marsh. We examine a method for evaluating the worth of a decision tree and look at seven sources of uncertainty in the models produced, namely algorithmic, predictive, model, scenario, objective, context and scale. The accuracy of prediction of types was strongly affected by the scenario and scale, with the most dynamically variable attributes associated with poor prediction, while more static attributes performed better. However, examination of the misclassified samples showed that prediction of processes was much better, with local vegetation type-induced patterns nested within a broader environmental framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.