Abstract

Understanding sources of uncertainty in climate-crop modelling is critical for informing adaptation strategies for cropping systems. An understanding of the major sources of uncertainty in yield change is needed to develop strategies to reduce the total uncertainty. Here, we simulated rain-fed wheat cropping at four representative locations in China and Australia using eight crop models, 32 global climate models (GCMs) and two climate downscaling methods, to investigate sources of uncertainty in yield response to climate change. We partitioned the total uncertainty into sources caused by GCMs, crop models, climate scenarios and the interactions between these three. Generally, the contributions to uncertainty were broadly similar in the two downscaling methods. The dominant source of uncertainty is GCMs in Australia, whereas in China it is crop models. This difference is largely due to uncertainty in GCM-projected future rainfall change across locations. Our findings highlight the site-specific sources of uncertainty, which should be one step towards understanding uncertainties for more robust climate-crop modelling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.