Abstract

Seedlings of 41 emmer (Triticum dicoccon Schrank) and 56 durum (T. durum Desf.) wheat accessions were evaluated for their response to stem rust (Puccinia graminis f. sp. tritici) infection under greenhouse condition at Kulumsa Agricultural Research Center, Ethiopia. The objectives were to identify tetraploid wheat accessions that could serve as sources of resistance to stem rust, and postulate the stem rust (Sr) resistance genes through multipatotype testing. The test included screening of accessions for stem rust resistance and multipatotype testing. To ensure vigorous screening, a mixture of six isolates (Si-1a, Am-2, Ku-3, Dz-4a, Ro-4 and Na-22) that were collected from severely infected emmer, durum, and bread wheat (Triticum aestivum L.) varieties of major wheat growing areas of Ethiopia was used as inocula. Out of the tested accessions, 18 emmer and 6 durum accessions exhibited low infection types (0–2) response and hence selected as a source of resistance to stem rust infection. Multipatotype testing was done to postulate Sr genes in the selected accessions. In the test, 10 different stem rust races (A2, A9, A11, A14, A16, A17, B3, B7, B15, and B21), 33 stem rust differential lines, and a universal susceptible check variety, Morocco were used, The high (3–4) and low infection type reaction patterns of the tested accessions and differential lines were used to postulate the genes that exhibit gene-for-gene relationship. The presence of Sr 7b, 8b, 9a, 9b, 10, 14, 24, 27, 28, 29, 30, 31, 32 and Tt-3+10 genes were postulated in 16 selected emmer and 5 durum wheat accessions. Efforts to transfer these valuable Sr genes from cultivated tetraploid wheats could be rewarding to get stem rust resistant varieties and boost wheat production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call