Abstract

Alterations in intrahepatic carbohydrate fluxes in ob/ob mice and the effects of acute leptin administration were studied in vivo by use of a dual-isotope tracer infusion. Metabolic sources of plasma glucose (gluconeogenesis (GNG) and glycogenolysis) and hepatic glycogen (GNG, direct synthesis and pre-existing) were determined in 20-h-fasted mice infused with [2-13C1]glycerol and [U13C6]glucose for 3 h. Total glucose output (TGO) and the rate of appearance (Ra) of plasma glycerol were measured by isotope dilution. GNG, the direct pathway of hepatic glycogen synthesis and hepatic triose-phosphate flux were determined by mass isotopomer distribution analysis (MIDA). Serum glucose, insulin, leptin and liver glycogen concentrations were also measured. After a 24-h fast, ob/ob mice had 2-fold higher TGO, 2.5-fold elevated liver glycogen content and markedly higher glycogenolytic flux to glucose, absolute GNG and direct glycogen synthesis rates (10-fold increased) compared to the control group. Ob/ob mice also had elevated triose-phosphate flux compared to controls (40 vs. 22 mg/kg lean body mass/min). A model of intrahepatic flux distributions in control and ob/ob mice is presented. In summary, elevated fasting plasma glucose concentrations are due to increased TGO in ob/ob mice, which is maintained by both increased GNG and increased glycogenolysis. Furthermore, the ob/ob mice have major alterations in fasting hepatic carbohydrate fluxes into triose-phosphate pools and glycogen. We support the model that actions of leptin on hepatic glucose metabolism require insulin or other factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call