Abstract

Lignin and pigment biomarkers were analyzed in surface sediments of the Louisiana Continental margin (LCM) to distinguish differences in the degradative state of sedimentary organic matter along and between two major depositional pathways (along shore and offshore to the Mississippi Canyon) from Southwest (SW) Pass in July 2003. Barataria Bay, an inter-distributary estuary, was also assessed as a potential source of terrestrial organic matter to the LCM. Sediment signatures taken along the same pathways after Hurricane Ivan (October 2004) were compared with the pre-Ivan signature to elucidate carbon dynamics after major hurricane events. Density fractions were investigated at key stages across the LCM. Mississippi Canyon sediments are a depocenter for labile and refractory organic matter derived from river and previously deposited shelf sediments. Barataria Bay material may be a contributing source of sedimentary organic matter in shallow shelf areas bordering the bay and is thus potentially important in carbon cycling in sediments of these shallow areas; however, our results show that organic matter inputs from the bay were likely rapidly decomposed and/or diluted. Hurricane Ivan mobilized sedimentary organic carbon (SOC) offshore and homogenized terrestrial sediment parameters and gradients. As observed through pigment concentrations sediments tended to equilibrate to a more steady-state condition within months of the disturbance. Insights from density fractions show that selective degradation and aggregation/flocculation processes were also very important processes during cross-shelf transport. Zooplankton grazing, largely on diatoms and other algae, was a shelf wide phenomenon, however, grazing products dominated the marine-derived SOC in margin sediments west of the birdsfoot delta indicated by the abundance of steryl chlorin esters (SCEs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call