Abstract

Biochemistry on Earth makes use of the key elements carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur (or CHONPS). Chemically accessible molecules containing these key elements would presumably have been necessary for prebiotic chemistry and the origins of life on Earth. For example, feedstock molecules including fixed nitrogen (e.g., ammonia, nitrite, nitrate), accessible forms of phosphorus (e.g., phosphate, phosphite, etc.), and sources of sulfur (e.g., sulfide, sulfite) may have been necessary for the origins of life, given the biochemistry seen in Earth life today. This review describes potential sources of nitrogen-, sulfur-, and phosphorus-containing molecules in the context of planetary environments. For the early Earth, such considerations may be able to aid in the understanding of our own origins. Additionally, as we learn more about potential environments on other planets (for example, with upcoming next-generation telescope observations or new missions to explore other bodies in our Solar System), evaluating potential sources for elements necessary for life (as we know it) can help constrain the potential habitability of these worlds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call