Abstract

Water samples from the two underground rivers (Fenghuang River and Longju River) and samples of the dry and wet deposition of atmospheric dissolved inorganic nitrogen were taken from the Longfeng karst trough valley located in the Zhongliang mountain in the suburbs of Chongqing from May 2017 to April 2018. Anions, cations, δ15 N(NO3-), δ18 O(NO3-), δ18 O(H2O), and δ13C(DIC) isotope data were used to investigate the NO3- source and its environmental effects. The results showed:① The hydrochemistry of the two underground rivers is of the type HCO3-Ca. The NO3- concentration varied from 17.58 to 32.58 mg·L-1, with an average of 24.02 mg·L-1, and was slightly higher in rainy season than the dry season, revealing that the underground rivers were polluted. ② The δ15 N(NO3-) value ranged from -3.14‰ to 12.67‰, with an average value of 7.45‰. The δ18 O(NO3-) value ranged from -0.77‰ to 12.05‰ with an average value of 2.90‰, and was higher in the dry season than the rainy season, indicating that animal excreta and domestic sewage were main NO3- sources throughout the year. In addition, rainfall, fertilizer, and soil nitrogen were the NO3- sources during the rainy season. There are no significant differences between the NO3- sources of the two underground rivers, and nitrification is the main nitrogen conversion process. ③ The molar ratio of (Ca2++Mg2+)/HCO3- varied from 0.65 to 0.82. That of the Fenghuang River was 0.75 and that of the Longju River was 0.70. The δ13C(DIC) value ranged from -12.46‰ to -9.20‰, with a mean of -11.10‰ in the Longju River and -10.72‰ in the Fenghuang River. These values indicated that the HNO3 derived from the nitrification of NH4+ was involved in the weathering of carbonate rocks. ④ HNO3 dissolved carbonate rocks and aggravated the chemical weathering of carbonate rock in the basin, contributing 8% of the DIC in groundwater, and 9% and 7% in Fenghuang River and Longju River, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.