Abstract

Abstract. This study investigated the sources of black carbon (BC) at two contrasting urban environments in Helsinki, Finland: residential area and street canyon. The measurement campaign in the residential area was conducted in winter–spring 2019, whereas in the street canyon the measurements were carried out in autumn 2015. The sources of BC were explored by using positive matrix factorization (PMF) for the organic and refractory black carbon (rBC) mass spectra collected with a soot particle aerosol mass spectrometer (SP-AMS). Based on the PMF analysis, two sites had different local BC sources; the largest fraction of BC originated from biomass burning at the residential site (38 %) and from the vehicular emissions in the street canyon (57 %). Also, the mass size distribution of BC diverged at the sites as BC from traffic was found at the particle size of ∼100–150 nm whereas BC from biomass combustion was detected at ∼300 nm. At both sites, a large fraction of BC was associated with urban background or long-range-transported BC indicated by the high oxidation state of organics related to those PMF factors. The results from the PMF analysis were compared with the source apportionment from the Aethalometer model calculated with two pairs of absorption Ångström values. It was found that several PMF factors can be attributed to wood combustion and fossil fuel fraction of BC provided by the Aethalometer model. In general, the Aethalometer model showed less variation between the sources within a day than PMF, indicating that it was less responsive to the fast changes in the BC sources at the site, or it could not distinguish between as many sources as PMF due to the similar optical properties of the BC sources. The results of this study increase understanding of the limitations and validity of the BC source apportionment methods in different environments. Moreover, this study advances the current knowledge of BC sources and especially the contribution of residential combustion in urban areas.

Highlights

  • Black carbon (BC) is a light-absorbing carbonaceous aerosol component that has significant climate impacts

  • The largest fraction of BC was related to biomass burning (BCBBOA; 38 %; Fig. 1) followed by BC associated with the LV-oxygenated organic aerosol (OOA) (BCLV-OOA; 27 %) and hydrocarbon-like organic aerosol (HOA) (BCHOA; 17 %) factors

  • This study investigated the sources of BC at two contrasting locations: in a residential area in winter- and springtime and in a street canyon in autumn

Read more

Summary

Introduction

Black carbon (BC) is a light-absorbing carbonaceous aerosol component that has significant climate impacts. It has a positive radiative forcing on climate (IPCC, 2014), and when deposited on snow, it can lead to the reduction of the earth’s surface albedo in snow-covered areas (Hansen and Nazarenko, 2004). The largest BC concentrations are typically measured in urban areas close to the source; BC can be transported long distances with the air masses (Ikeda et al, 2017). In particular the transport of BC to Arctic areas has been associated with a substantial impact on climate (AMAP, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call