Abstract
Lithography tools are being built and shipped to semiconductor manufacturers for high volume manufacturing using extreme ultraviolet lithography (EUVL) at a wavelength of 13.5 nm. This wavelength is based on the availability of Mo/Si multilayer mirrors (MLMs) with a reflectivity of ∼70% at this wavelength. Moreover, the primary lithography tool manufacturer, ASML, has identified 6.x nm, where x∼7, as the wavelength of choice for so-called Beyond EUVL, based on the availability of La/B4C MLMs, with theoretical reflectance approaching 80% at this wavelength. The optimum sources have been identified as laser produced plasmas of Gd and Tb, as n = 4–n = 4 transitions in their ions emit strongly near this wavelength. However, to date, the highest conversion efficiency obtained, for laser to EUV energy emitted within the 0.6% wavelength bandwidth of the mirror is only 0.8%, pointing to the need to identify other potential sources or consider the selection of other wavelengths. At the same time, sources for other applications are being developed. Conventional sources for soft x-ray microscopy use H-like line emission from liquid nitrogen or carbon containing liquid jets which can be focused using zone plates. Recently the possibility of using MLMs with n = 4−n = 4 emission from a highly charged Bi plasma was proposed and subsequently the possibility of using Δn = 1 transitions in 3rd row transition elements was identified. All of these studies seek to identify spectral features that coincide with the reflectance characteristics of available MLMs, determine the conditions under which they are optimized and establish the maximum conversion efficiencies obtainable. Thus, there is a need for systematic studies of laser produced plasmas of a wide range of elements as some of the challenges are similar for all of these sources and some recent results will be presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.