Abstract

The deep basinal euxinic sediments of the Black Sea are enriched in iron that is highly susceptible to sulfidization compared to oxic/suboxic continental margin sediments in the Black Sea and oxic/dysoxic continental margin and deep-sea sediments worldwide. A mass balance treatment of iron speciation data from three deep basin sediment cores shows that this enrichment is due to a combination of (1) highly reactive iron-bearing phases (sulfides and oxides) whose ultimate source was by diagenetic mobilization from the shelf (Wijsman and others, 2001) and (2) enhanced iron reactivity in the lithogenous component of deep basinal sediments. The cause of the enhanced reactivity of lithogenous iron is problematical. Possible mechanisms include microbial oxidation of non-reactive iron silicates and the preferential deposition of a fine-grained, reactive iron-enriched lithogenous component in the deep basin by the fractionation of the lithogenous flux during transport across the shelf. The application of paleoredox indicators based on iron reactivity (Degree of Pyritization, Indicator of Anoxicity) should take into account that the availability of highly reactive iron, and hence the concentration of reactive iron phases in the sediment, is controlled by a variety of chemical, physical and biological factors, some of which are not related directly to redox conditions in the water column.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.