Abstract

The transport of organic matter in coastal areas plays an important role in global biogeochemical cycles. The present study used stable isotopes including carbon (δ13C) and nitrogen (δ15N) and C/N ratio to assess the sources and fate of organic carbon and nitrogen in soils and sediments of a coastal plain-river plume-bay system. Changes of the δ13C and δ15N values from natural to agricultural soils in the Yellow River coastal plain reflected the contribution of C4 carbon, decomposition of organic matter and application of nitrogen fertilizer. The organic carbon in the marine sediments adjacent to the coastal plain mainly originated from C3-dominated terrestrial systems. The spatial heterogeneity of both δ13C and δ15N values indicated that Yellow River sediment transport and anthropogenic wastewater discharge were two driving forces for the sedimentary organic carbon and nitrogen dynamics in large river plume and inner bay areas. Meanwhile, the marine primary production and denitrification process as affected by excessive nutrient input also contributed to the cycling of organic matter. Wetland soils, cropland soils, vegetable soils, coastal and deep-sea sediments were the five systems controlling the cycle of organic carbon and nitrogen in the study area. A significant positive correlation between δ13C and δ15N in the Yellow River coastal plain-plume-bay region was observed, which implied the flux of organic matter from a labile pool in source regions into a more recalcitrant pool in sink regions. These findings would provide a better understanding of carbon sequestration in the coastal soil and sediment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.