Abstract

Active travel (AT) has the potential to integrate with, or in some cases substitute for, trips taken by motorized transportation. In this paper we review relevant research on AT outcomes to address the potential of AT and emerging data sources in supporting the transport paradigm shift toward AT. Our analysis identifies physical, mental, built and physical environmental, monetary, and societal outcomes. Traditional methods used to acquire AT data can be divided into manual methods that require substantial user input and automated methods that can be employed for a lengthier period and are more resilient to inclement weather. Due to the proliferation of information and communication technology, emerging data sources are prevailing and can be grouped into social fitness networks, in-house developed apps, participatory mapping, imagery, bike sharing systems, social media, and other types. We assess the emerging data sources in terms of their applications and potential limitations. Furthermore, we identify developing policies and interventions, the potential of imagery, focusing on non-cycling modes and addressing data biases. Finally, we discuss the challenges of data ownership within emerging AT data and the corresponding directions for future work.

Highlights

  • Active travel (AT), namely journeys that have been undertaken either entirely or partially using human-powered transportation modes such as walking, cycling, or using a wheelchair, has been the focus of much attention due to its potential for remedying negative impacts of urbanization

  • Unlike public transportation, AT has played an instrumental role during the COVID-19 outbreak, favoring the practice of social distancing [5]

  • This paper aims to assess the state of knowledge on emerging data

Read more

Summary

Introduction

Active travel (AT), namely journeys that have been undertaken either entirely or partially using human-powered transportation modes such as walking, cycling, or using a wheelchair, has been the focus of much attention due to its potential for remedying negative impacts of urbanization. AT helps to meet required physical activity guidelines and reduces traffic congestion and pollution [1,2]. Micromobility transport modes are less physically taxing with a shorter travel duration, reducing the reliance on conventional vehicles, for short journeys [3,4]. The emphasis of transport planning in most cities is still car-dominant, with policies such as minimum car parking requirements and gas subsidies aiming to reduce car delays across many urban transport networks [6]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call