Abstract

In this letter, we propose a novel design methodology for engineering source/drain extension (SDE) regions to simultaneously improve intrinsic dc gain (A <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">VO</sub> ) and cutoff frequency (f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T </sub> ) of 25-nm gate-length FinFETs operated at low drain-current (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ds</sub> =10 muA/mum). SDE region optimization in 25-nm FinFETs results in exceptionally high values of A <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">VO</sub> (~45 dB) and f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> (~70 GHz), which is nearly 2.5 times greater when compared to devices designed with abrupt SDE regions. The influence of spacer width, lateral source/drain doping gradient, and the spacer-to-gradient ratio on key analog figures of merit is examined in detail. This letter provides new opportunities for realizing future low-voltage/low-power analog design with nanoscale SDE-engineered FinFETs

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call