Abstract

BackgroundIdentifying typical odor-causing compounds is essential for odor problem control in drinking water. In this study, aiming at a major water source reservoir in hot and humid areas in southern China, which encountered seasonable odor problems in recent years, an integrated approach including comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC–TOFMS), flavor profile analysis (FPA) and quantitative real-time polymerase chain reaction (qPCR) was adopted to investigate the odor occurrence.ResultsThe results indicated that earthy–musty odor is blamed to the seasonable odor problems, and it is consistent with the complaints results from consumers. Fifty-four typical odor compounds were investigated in the reservoir and twelve were detected, of which, 2-methylisoborneol (2-MIB) was significantly increased during the odor event. Pseudanabaena sp. is the dominant species in the reservoir, which can be further represented by the number of mic gene with qPCR method (R2 = 0.746, P < 0.001). Oxygen consumption (CODMn) and dissolved organic carbon (DOC) have great influence on growth of Pseudanabaena sp., and the release of 2-MIB from the Pseudanabaena sp. cells is affected by temperature and light.ConclusionOur findings demonstrated that 2-MIB is the odor-caused substance in the reservoir and Pseudanabaena sp. is the main 2-MIB producer, which was confirmed as a benthic filamentous algae. Due to CODMn and DOC have great influence on Pseudanabaena sp. growth, further measures to reduce the CODMn and DOC input should be performed. We also demonstrated that the 2-MIB release is affected by temperature and light. The risk of sudden increase of 2-MIB will be reduced by raising the depth of water in the reservoir. Our study will improve the understanding of T&O problems in this city, as well as in other hot and humid area.

Highlights

  • Identifying typical odor-causing compounds is essential for odor problem control in drinking water

  • Due to the low odor threshold concentration (OTC) of the odorants, for instance, 2-MIB (2-methylisoborneol) and geosmin were reported as 10 ng/L and 8 ng/L, respectively [7], and the limited removal efficiency with conventional water treatment process [8, 9], it is difficult for water treatment plant to adopt applicable control measures once encountering Taste and odor (T&O) episodes in drinking water

  • It is confirmed that 2-MIB is the odor-caused substance in Shiyan reservoir and Pseudanabaena sp. is the main 2-MIB producer

Read more

Summary

Introduction

Identifying typical odor-causing compounds is essential for odor problem control in drinking water. No researches have shown that the presence of some odorants in the drinking water will cause harm to human health [2,3,4], the unpleasant smell of drinking water will undoubtedly affect the quality of consumers’ life and the impression of water supply enterprise [5]. Due to the low odor threshold concentration (OTC) of the odorants, for instance, 2-MIB (2-methylisoborneol) and geosmin were reported as 10 ng/L and 8 ng/L, respectively [7], and the limited removal efficiency with conventional water treatment process [8, 9], it is difficult for water treatment plant to adopt applicable control measures once encountering T&O episodes in drinking water. It is one prerequisite to identify possible odorants for further choosing effective control measures

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call