Abstract
IntroductionFull quantification of positron emission tomography (PET) data requires an input function. This generally means arterial blood sampling, which is invasive, labor-intensive and burdensome. There is no current, standardized method to fully quantify PET radiotracers with irreversible kinetics in the absence of blood data. Here, we present Source-to-Target Automatic Rotating Estimation (STARE), a novel, data-driven approach to quantify the net influx rate (Ki) of irreversible PET radiotracers, that requires only individual-level PET data and no blood data. We validate STARE with human [18F]FDG PET scans and assess its performance using simulations. MethodsSTARE builds upon a source-to-target tissue model, where the tracer time activity curves (TACs) in multiple “target” regions are expressed at once as a function of a “source” region, based on the two-tissue irreversible compartment model, and separates target region Ki from source Ki by fitting the source-to-target model across all target regions simultaneously. To ensure identifiability, data-driven, subject-specific anchoring is used in the STARE minimization, which takes advantage of the PET signal in a vasculature cluster in the field of view (FOV) that is automatically extracted and partial volume-corrected. To avoid the need for any a priori determination of a single source region, each of the considered regions acts in turn as the source, and a final Ki is estimated in each region by averaging the estimates obtained in each source rotation. ResultsIn a large dataset of human [18F]FDG scans (N = 69), STARE Ki estimates were correlated with corresponding arterial blood-based Ki estimates (r = 0.80), with an overall regression slope of 0.88, and were precisely estimated, as assessed by comparing STARE Ki estimates across several runs of the algorithm (coefficient of variation across runs=6.74 ± 2.48%). In simulations, STARE Ki estimates were largely robust to factors that influence the individualized anchoring used within its algorithm. ConclusionThrough simulations and application to [18F]FDG PET data, feasibility is demonstrated for STARE blood-free, data-driven quantification of Ki. Future work will include applying STARE to PET data obtained with a portable PET camera and to other irreversible radiotracers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.