Abstract

<p>Mid-latitude fjords have recently been identified as important environments for carbon storage. This research highlights the importance of the lateral transport of carbon from land to sea as we assess the influence of catchment land use (primarily forestry) on carbon transport and sediment carbon burial. Establishing the influence of land use, specifically forestry, on coastal biogeochemical cycling is particularly important if afforestation is to help mitigate climate change impacts, and to better understand the impact of deforestation. The relationship between carbon and iron in fjord sediments is the focus of this study. We provide insights into carbon and iron coupling in a mid-latitude fjord. Here we show the variability of carbon burial, and how this is influenced by terrestrial inputs and iron speciation in fjord sediments. We use bulk organic carbon and elemental data, isotopic analysis, Mössbauer spectroscopy and chemical extractions to better understand the relationship between carbon and iron. Observed decreases in organic carbon from the upper to lower basin are influenced by the input of terrestrial material. Organic carbon is up to three times higher in the upper basin and terrestrial organic carbon is ~20% higher in comparison to the lower basin of the fjord. The strength of the reactive iron signal is found to vary vertically (with depth, over time) and laterally (from upper – lower basin) within this fjord. Results highlight that there is a changing relationship between iron and carbon within this system. Understanding land-sea controls on coastal carbon transport and burial is crucial during this period of climate change.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call