Abstract

Source strength functions (SSF), defined as contaminant mass discharge or flux-averaged concentration from dense nonaqueous phase liquid (DNAPL) source zones as a function of time, provide a quantitative model of DNAPL source-zone behavior. Such information is useful for calibration of screening-level models to assist with site management decisions. We investigate the use of historic data collected during long-term monitoring (LTM) activities at a site in Rhode Island to predict the SSF based on temporal mass discharge measurements at a fixed location, as well as SSF estimation using mass discharge measurements at a fixed time from three spatially distributed control planes. Mass discharge based on LTM data decreased from ~300 g/day in 1996 to ~70 g/day in 2012 at a control plane downgradient of the suspected DNAPL source zone, and indicates an overall decline of ~80% in 16 years. These measurements were compared to current mass discharge measurements across three spatially distributed control planes. Results indicate that mass discharge increased in the downgradient direction, and was ~6 g/day, ~37 g/day, and ~400 g/day at near, intermediate, and far distances from the suspected source zone, respectively. This behavior was expected given the decreasing trend observed in the LTM data at a fixed location. These two data sets were compared using travel time as a means to plot the data sets on a common axis. The similarity between the two data sets gives greater confidence to the use of this combined data set for site-specific SSF estimation relative to either the sole use of LTM or spatially distributed data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.