Abstract

The source rupture process of the 2016 central Tottori, Japan, earthquake (MJMA 6.6) was estimated from strong motion waveforms using a multiple-time-window kinematic waveform inversion. A large slip region with a maximum slip of 0.6 m extends from the hypocenter to the shallower part, caused by the first rupture propagating upward 0–3 s after rupture initiation. The contribution of this large slip region to the seismic waves in the frequency band of the waveform inversion is significant at all stations. Another large slip region with smaller slips was found in north-northwest of the hypocenter, caused by the second rupture propagating in the north-northwest direction at 3–5 s. Although the contribution of this slip region is not large, seismic waveforms radiating from it are necessary to explain the later part of the observed waveforms at several stations with different azimuths. The estimated seismic moment of the derived source model is 2.1 × 1018 Nm (Mw 6.1). The high-seismicity area of aftershocks did not overlap with large-slip areas of the mainshock. Two wave packets in the high frequency band observed at near-fault stations are likely to correspond to the two significant ruptures in the estimated source model.Graphical .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.