Abstract

A pyrolysis-gas chromatography system has been developed for the rapid evaluation of potential source rocks. For the determination of organic richness and maturation, this system uses the pyrolysis methods previously described. However, the determination of hydrocarbon production type and the identification of contamination (by migrated hydrocarbons or drilling additives) are accomplished by gas chromatographic (GC) analysis of the thermal extracts and pyrolysis products of rock samples or isolated kerogens. The production type is recognized either qualitatively by GC fingerprint traces or quantitatively by hydrocarbon composition (C1 to C6, C6 to C11, C11+) from the kerogen (Peak II) pyrolysate. Oil-prone erogens are recognized by GC traces with a full spectrum of C1 to C28 hydrocarbons, or by high concentrations of C11+ compounds. In contrast, gas-prone kerogens are characterized by the predominance of light hydrocarbons from C1 to C4 and higher contributions of aromatic compounds. Mixed-type production is intermediate in character between the two. Contaminants are identified from the GC analysis of the thermally extractable material in Peak I. Possible mineral-organic matter reactions during sample heating make interpreting data from whole-rock samples more difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.