Abstract
A molecular analysis of betaproteobacterial ammonia oxidizers and a N(2)O isotopomer analysis were conducted to study the sources of N(2)O emissions during the cow manure composting process. Much NO(2)(-)-N and NO(3)(-)-N and the Nitrosomonas europaea-like amoA gene were detected at the surface, especially at the top of the composting pile, suggesting that these ammonia-oxidizing bacteria (AOB) significantly contribute to the nitrification which occurs at the surface layer of compost piles. However, the (15)N site preference within the asymmetric N(2)O molecule (SP = delta(15)N(alpha) - delta(15)N(beta), where (15)N(alpha) and (15)N(beta) represent the (15)N/(14)N ratios at the center and end sites of the nitrogen atoms, respectively) indicated that the source of N(2)O emissions just after the compost was turned originated mainly from the denitrification process. Based on these results, the reduction of accumulated NO(2)(-)-N or NO(3)(-)-N after turning was identified as the main source of N(2)O emissions. The site preference and bulk delta(15)N results also indicate that the rate of N(2)O reduction was relatively low, and an increased value for the site preference indicates that the nitrification which occurred mainly in the surface layer of the pile partially contributed to N(2)O emissions between the turnings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.