Abstract

A conventional “recipe” for strong ground motion prediction has been applied to the seismic fault (deep fault; located within seismogenic layer). In order to perform assessments of strong ground motions and permanent displacements at sites very close to the fault trace, we proposed the method of modeling that takes the entire ruptured fault from the ground surface to the seismic fault into account. Our approach was validated by the simulation of observed records obtained at stations very close to the fault trace of the mainshock of the 2016 Kumamoto Japan, earthquake (Mw7.1). Also, through the ground motion assessment performed for a hypothetical strike-slip fault with a 90[Formula: see text] dip angle, we found that adding the shallow fault had virtually no effect on acceleration time history, but it had a clear effect on the fault-parallel component of velocity and displacement time histories in the area close to the fault trace.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.